足球竞彩app排名

今天是
今日新发布通知公告1条 | 上传规范

【百家大讲堂】第237期:多功能协同策略增强材料性能

来源:   发布日期:2019-09-16

讲座题目:多功能协同策略增强材料性能 Multifunctional Synergy for Enhancing Materials Performance

报 告 人:窦世学 (教授/澳大利亚科学与工程院院士)

时   间:2019年9月27日(周五)14:00-16:00

地   点:中关村校区研究生教学楼101报告厅

主办单位:研究生院、材料学院

报名方式:登录北京理工大学微信企业号---第二课堂---课程报名中选择“【百家大讲堂】第237期:多功能协同策略增强材料性能”

【主讲人简介】

  窦世学教授,现为澳大利亚伍伦贡大学超导与电子材料研究所所长,1984年加拿大Dalhousie University化学系博士毕业,1994年被澳大利亚科学与工程院评为院士,于2003年获Australian Government’s Centenary Medal, 2008年获Vice-Chancellors Senior Excellence Award, 2012年获Vice-Chancellor Oustanding Partnership Award。Shi-Xue Dou院士的研究领域是能源储备材料、超导和电子材料及应用,是世界上超导和能源储备材料领域最有影响力的科学家之一。已在国际著名期刊发表文章六百余篇,被索引次数达17000次,H-index为60。是中科院首批聘任的海外评审专家及国务院侨办聘任的海外专家咨询委员会委员,新西兰皇家基金会、美国国家基金会、香港科学基金会和中国科学基金会专家评委。

 

Shi Xue Dou is a Distingiushed Professor at University of Wollongong, the founding derector of ISEM and UOW Ambassador for China. He received his PhD at Dalhousie University, Canada in 1984 and DSc at the University of New South Wales in 1998 and was elected as a Fellow of the Australian Academy of Technological Science and Engineering in 1994. He was awarded the Australian Government’s Centenary Medal in 2003 and Australian Order of Member in 2019 for his contribution to materials science and engineering, multiple Australian Professorial Fellowships from 1993 to 2011, the Vice-Chancellors Senior Excellence Award in 2008, Outstanding Partnership Award in 2012 and the Life Achievement Award from ASTS in 2018. He is named as a highly cited researcher in materials science by Thomson Reuters with citations of 42,000 and h-index of 94 (Scopus). His research focusses on energy and electronic materials. He has supervised and co-supervised 98 PhD students, more than 60 postdoctoral and visiting fellows. He is program leader for Auto CRC 2020 on electrification program and the on-going ARENA 2016-2020 on smart sodium storage system program.

【讲座信息】

  目前,科学家们在新材料设计和加工战略和方法的发展方面取得了重大进展。在这里,我们特别强调了多功能组合的优势,以实现对材料性能的协同增强效应。包括碳涂层与带工程相结合以改变电子性能;形貌控制的通用方法;物理约束与催化效应相结合以控制金属硫电池中多硫化物的损失;多种应变工程用于改进超导体中的通量钉扎和催化剂中的反应位点;用于控制纳米材料尺寸、形状和成分等生长的加和减工程;实现优化的电子、离子和光学性能的多维操作;设计蛋黄壳球/核壳结构用于控制不需要的应变;在材料、结构和装置层面进行交叉,以实现高活性催化剂和存储材料的制备。无论是在基础还是应用层面,界面/表面科学和工程是材料设计和加工的最关键要素。我们的大多数研究都局限于研究投入到研究产出的范围内,而研究产出和商业应用之间存在巨大差距,这也是需要我们重视的问题。在从实验室到实际应用的工业转化过程中,扩大规模达到量产仍然是一大挑战。

 

Significant advances in development of strategies and approaches on novel materials design and processing have been made. Here we particularly highlight the advantages of combination of multi-functionalities to achieve synergetic effect on materials performance. These include combination of carbon coating with band engineering for alteration of electronic properties; universal general approach for morphology control; combination of physical confinement with catalytic effect to control polysulphide loss in metal sulphur battery; Multiple strain engineering for improvement of flux pinning in superconductor and reactive sites in catalysts; Additive & subtractive engineering for controlled growth of nanomaterials with designed size, shape and composition; Multiple dimension manipulation to achieve optimised electronic, ionic and optical properties; York-shell sphere/Core-shell structures to control unwanted strain; Hybridisation at materials, structure & device level to achieve high reactivity in catalysts and storage materials. Among these the interface/surface science and engineering is the most critical element for materials design and processing at both fundamental and applied level. Most of our research is limited within the block of research inputs to research outputs while there is a huge gap between research outputs and commercial benefits in our research which need to be addressed. Scaling-up remains as a great challenge to facilitate industry transformation processes from laboratory to real world applications.