打造高水平科技创新平台和一流科研团队!
Many scientific systems of interests can be modeled as a network. On
the other hand, the best way to understand the specialty and the
importance of an individual is placing it into a proper network. A network
is represented as an (un)directed graph, where nodes or vertices stand for individuals while edges or arcs for the relationship between pairs of nodes.
Static network analysis is to identify important elements (node or edge) in
networks, based on only the topology of networks. To measure the importance
of an element (node or edge), various centrality metrics have been proposed
in past years. In this talk, after reviewing several commonly used centrality
metrics I will present some applications of static network analysis in identification
of essential proteins, drug targets and disease genes from biomolecular networks.
主讲人简介:
吴方向教授于1998年获西北工业大学控制理论与控制工程专业博士学位,2004年获加拿大莎省大学(University of Saskatchewan)生物医学工程专业博士学位;现为莎省大学全职教授,生物医学工程研究生院院长;担任7个国际杂志的编委会成员,IEEE Fellow,加拿大注册专业工程师;主要研究方向为:系统生物学、基因组和蛋白质组数据分析、生物系统识别与参数估计、蛋白质相互作用网、以及控制理论在生物系统中的应用等;承担多项加拿大国家级科研项目,在国际知名期刊Proteomics,BMC Systems Biology,Briefings in Bioinformatics和Scientific Report等以及各种会议上共发表论文200余篇。
欢迎广大师生积极参与!